Plant Technology II

Solid Fertilizer from Urine

 

By Prof Dr Dr h.c. Randolph Riemschneider

Central Institute of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil

Institute of Biochemistry, Free University (FU) Berlin, Germany

 

 

It has become a matter of course today to use the resources available to us sparingly and to burden the environment as little as possible. All the same, little use is being made of the huge amounts of urine produced by humans and animals every day - not taking into account liquid manure.

As early as 1947, experiments were conducted with the objective of recovering solid fertilizer from urine which could be classified as “NPK fertilizer” [1].

Below, LLB Fellow Riemschneider summarizes the results achieved at the time which also offer an opportunity to save the depleting supplies of phosphate.

                                                                                                    - The  Editor

 

 

Over the years, the author has not only used preparations based on yeast such as Y 2000 [2] and H 38 [3] to accelerate plant growth, but also urine which is produced in vast amounts every day by humans (and animals) and is exploited only to a very limited extent. The sole exception is liquid manure in farming. However, the phosphates and the urea contained in urine, fantastic sources of P and N, are lost year by year. The main difficulty is the issue of collecting the large quantities of urine.

 

At the time, the author had engaged in the following technical considerations on the topic of "Fertilizing with urine in a suitable form" and taken into account certain experience and observations he had made:

 

He had learnt from a schoolmate that potted plants die after a comparatively short time if they are given urine instead of water. This means substances damaging to the plant accumulate in the soil of the pot [4]. This need not be feared if urine is used as a fertilizer in nature, because it can be distributed more evenly and will be mixed with water and rain at that. In agriculture, urine is used the way it is obtained. Preparing urine in the form of a concentrated "liquid fertilizer" for everyday use is not advisable for economic reasons and, moreover, would require a considerable amount of energy.

 

These and other considerations encouraged the author to separate the valuable components of urine or diluted urine with the aid of one or more suitable precipitants and to prepare a solid urine fertilizer with an analysed and, if necessary, adjusted NPK content.

 

 

Professor K. Lohmann, head of the laboratory course in Physiological Chemistry for medical students at Berlin University, had asked the author in 1947 to give the introductory lecture to this laboratory course in his stead, for example for the "urine lab course" (400 medical students). In order to collect the urine necessary for the planned experiments, three 20 litre bottles with a large funnel had been installed in the well frequented gents' toilet at the Institute of Physiology with a note: "It is requested to donate urine for the main physiological-chemical lab course for medical students". In order to stabilize the urine, the bottles contained a small quantity of toluene.

 

With the consent of Prof Lohmann, the author was able to design and deliver the introductory lecture in accordance with his own concept. During the "urine lecture", he referred to the vast amounts of urine (which are in the range of trillions of litres from 5 billions of humans every year) which are produced in sterile form by mankind and which contain solid N, P, K and Mg components suitable as fertilizers.

 

Even during the preparatory phase for the lab course, the author made plans to conduct experiments with any unused urine quantities: The solids precipitated with suitable "salts" yielded a powder after filtration and drying which did not give the slightest inkling of its origin, i.e. was practically odourless. The formula developed in additional experiments has been included in the hectographed lecture notes for the Biochemical Basic Lab Course developed by the author [5] under the title "Urine Solid Precipitation for the Recovery of Fertilizer". The following questions were discussed in the seminars accompanying the above mentioned lab course: How can urine best be "collected"? Is it possible to design toilet bowls permitting the separation of urine? Concept of "separating toilets". What is the attitude of water-treatment authorities on the question of separating water for drinking and water for other uses?

 

During the years 1948/49, the method the author had developed for separating the valuable N, P, K solids from human urine or diluted urine was improved further, especially under the aspect of profitability.

 

The first outdoor experiments on lettuce and tomatoes were conducted with the preparation named U 48 in the allotment garden of a friend in Berlin-Falkensee - see the first series of photographs. These experiments were then continued a few years later with the urine fertilizer preparation U 55 in the greenhouse belonging to the Institute of "Kalisyndikat" (Potassium Syndicate) in Berlin-Lichterfelde-Süd rented by the Free University. U 55 and NPK-adjusted U 55-preparation, were certainly able to compete with a common commercial NPK fertilizer - see the second series of photographs. The experiment concluded with a written summary of experiments with potted chrysanthemums and hydrangeas with different fertilizers.

 

Large-scale fertilizing experiments with "U 55" and "adjusted U 55" were conducted in Brazil later, namely on the fazenda of the President of the Federal University Santa Maria in Rio Grande do Sul (UFSM). Plants: Lettuce, red cabbage, celery, rice. In parallel, we ran experiments with a commercial phosphate fertilizer prepared from salts. Excellent results were achieved with U 55-preparations which are documented in [6]. In trials over the years, test persons and food chemists never found any difference concerning the taste and the vitamin content between U 55 treated vegetable plants and controls.

 

Comments on the following series of photographs (photographs with the dates they were taken):

First series of photos on U 48 (controls on the right-hand side): Lettuce 2, 78; tomatoes 29, 46, 65.

Second series of photos on U 55: White cabbage 23, 52 (control in the middle); kohlrabi 25, 75; celery 4, 72. - The soil in each of the pots consisted of 1 TS sand, 1 TS peat plus 3g of CaCO3.

 

 


U 48 – Experiments:                                                    

                                 

     

 

 

U 55 – Experiments:

                

                  

 

 

 

Further experiments with different fertilizers were carried out in Berlin on various potted flowers (without photographs): urine powder U 55 based.

 

Ablichtung eines Protokolls:

Versuch mit Chrysanthemen und Hortensien

 

Vorbereitung der Pflanzerden und Pflanzung

Normale Gartenerde wurde durch ein feinmaschiges Sieb gegeben, um sie zu lockern und von Unkraut und Steinen zu befreien. Anschließend wurde sie mit gesiebtem Torf im Volumenverhältnis 1:1 vermischt. 

 

Pflanzung der Chrysanthemen:

Zur Pflanzerde wurden 3g CaC03/L hinzugegeben

Die 8-10cm hohen Setzlinge wurden wie folgt in 1L-Blumentöpfe gepflanzt:

            10  Pflanzen ohne weiteren Zusatz

            10  Pflanzen mit Zugabe von 3g Plantosan-4 D      pro Topf

            10  Pflanzen mit Zugabe von 3g Urindünger-Pulver pro Topf

   10  Pflanzen mit Zugabe von 3g Eigenmischung b   pro Topf

Je 5 Töpfe einer Gruppe wurden in das Freibeet gestellt, die anderen Töpfe verblieben im Gewächshaus.

 

Pflanzung der Hortensien:

Die 15cm hohen Stecklinge wurden in 1L-Töpfen geliefert.

Das Wurzelwerk war schon soweit ausgebildet, daß eine Umpflanzung in gleichgroße Töpfe mit anderer Erde unmöglich war.

Die Düngesalze wurden oberflächlich in die Töpfe ein­gekrazt.

 

Die Düngung der Hortensien erfolgte wie nachstehend:

            10  Pflanzen ohne weiteren Zusatz

            10  Pflanzen mit Zugabe von 3g Plantosan-4 D      pro Topf

            10  Pflanzen mit Zugabe von 3g Urindünger-Pulver pro Topf

   10  Pflanzen mit Zugabe von 3g Eigenmischung b   pro Topf

Je 5 Töpfe einer Gruppe wurden in das Freibeet gestellt, die anderen Töpfe verblieben im Gewächshaus.

 

Die Pflege der Pflanzen beschränkte sich auf tägliches Gießen mit Leitungswasser und auf Entfernung von Un­kräutern; ferner mußten die hoch wachsenden Pflanzen zur Vermeidung von Brüchen angebunden werden.

Seit der Pflanzung der Setzlinge am 19.Juni wurde deren Entwicklung ständig beobachtet. Schon nach 2 Wochen konnte ein stärkeres Wachstum der gedüngten Chrysanthemen gegenüber den ungedüngten verzeichnet werden. Bei den Hor­tensien konnte erst nach 4 Wochen ein unterschiedliches Wachstum erkannt werden.

Bei allen Sorten zeigten die gedüngten Pflanzen ein kräftigeres Grün der Blätter als die ungedüngten.

 

The following tables clearly show that the fertilized plants grew much better than the unfertilized ones.

 

Tabelle vom 26. Juli:

 

Tabelle vom 7. August:

 

Durch die Aufstellung der Pflanzen im Freibeet und im Gewächshaus konnte der Witterungseinfluß auf das Wachstum beobachtet werden: Im Freibeet war die Wuchshöhe der Hortensien kleiner, die Blütenzahl größer und der Blütendurchmesser kleiner als im Gewächshaus.

Bei den im Freibeet aufgestellten Chrysanthemen waren die Wuchshöhe und die Zahl der Verästelung deutlich geringer als im Gewächshaus.  

 

 

 

That much on the experiments conducted from 1947 to 1957 and later.

 

The time was not right for a patent application then - it was too early: Patent protection is granted for only 20 years, and the author expected a waiting period of 40 to 50 years (!).

 

 

Actually, the first steps have only just been taken. ROEDIGER has developed a "separation toilet" which offers the following technical advantages: Reduction of toilet flush water consumption and undiluted urine separation as a way to recycle human waste into agricultural fertilizer [7].

 

Also, the point when the earth's phosphate supplies will be depleted has drawn nearer. The author thinks that the time is now right for recovering fertilizers based on urine solids - in combination with a method for separating drinking water and water for other uses:

 

Our drinking water is much too valuable to be misused for toilet flushing.

 

At the age of 90, the author does not intend to apply for a patent for the process developed approximately 60 years ago, but will be happy to make his knowledge available to those who wish.

 

 

EPILOGUE

 

I should be permitted to add an epilogue to underline the significance of the fertilizer experiments described here:

 

In essay one [2] possibility was shown to do without artificial fertilizer altogether or at least restrict its use considerably.

It is undisputed that the world needs fertilizer. Agricultural spaces shrink, the world population grows and the need for food increases.

The following example from the middle of densely populated Germany will show how important it is to develop new methods: The price of potassic fertilizer has quadrupled over the last few years, and the demand is still growing. Of the potassium recovered in Germany[1], 70 % are useless rock salt part of which is stockpiled, for example between Eisenach and Hersfeld, and has become "Monte Kali" [2] (over 200 m high by now). Another part is oversalted sewage - presently 14 million litres per year all of which is fed into the river Werra. Separating the rock salt is time consuming (three different processes), costs a lot of energy and is a burden on the environment day after day

 

This example shows how urgent it is to develop processes that do not need artificial fertilization.


References:

 

[1]      R.Riemschneider

Herstellung und analytische Untersuchungen von U 48 und U 55, Urin-Feststoff-Fällungen (reguliert) zu Düngerzwecken – Düngerversuche mit U 48, U 55

7 Lab reports 1948 and 1954/55: In all cases with U 55 (U 48) better growth than in control groups; comparison with usual NPK-Fertilizer was  positive.

 

[2]     R. Riemschneider        

          Plant technology I : at www.bwwsociety.org/journal/html/planttech.htm.    2008

 

[3]     R.Riemschneider

Studiums der „Konservierung von Hefe“, führend zum Präparat H 38, und dessen Prüfung auf wachstumsfördernde Wirkung an tierischen und pflanzlichen Organismen

12 Lab report from  1938. (unpublished): 

Animal experiments 1938 with Johannes Hoeck, from 1942  with Franz Maaz, Elisabeth Schölzel, Barbara Rohrmann, Petrpnella Geschke. Plant experiments from 1938 with Eva Hausmann, Nussa Schuster, Elisabeth Schölzel, Karl Wassmannsdorf; Christian Rohde

 

[4]     H.Doll, Privatmitteilung

 

[5]    R.Riemschneider

Biochemisches Grundpraktikum

1953-1959 : Hektographierte Texte, den Studenten zur Verfügung gestellt

1960-2009 : In 9 Auflagen gedruckte Exemplare, erschienen in deutscher und ab 1974 auch in portugiesischer Sprache für Studenten der FU Berlin und der UFSM, Santa Maria, Rio Grande do Sul, Brasilien (Universitätsdruckerei).

4.Auflage 1982:  FRED HÖPFNER, Pestalozzistr.106, Berlin 12.

Die Arbeitsvorschrift „Urinfeststoff-Fällung zur Düngergewinnung“ war nur  in den hektographierten Exemplaren enthalten und ist später aus patentrechtlichen Gründen gestrichen worden.

Ebenfalls in 9 Auflagen erschienen ist das zum Praktikum gehörende Buch,  betitelt „Material für biochemische Einführungsvorlesungen”; Druck der 9. Auflage 2009 (Seiten XV + 75) durch: DIGITAL-PRINTING-HALL-GmbH, D-10787 Berlin, Bayreuther Str.8

 

[6]     A.Brown, R.Riemschneider

Vergleichende Düngerversuche mit „U 55“, mit „U 55 phosphatreguliert“ und mit Phosphatdüngersalzen

UFSM-Gutachten, 1957, 15 Seiten

 

[7]     Roediger Vakuum- und Haustechnik GmbH

ROEDIGER-No Mix Toilet, D-63450 Hanau, http://www.roevac.com  2009

Berger Biotechnik GmbH, http://www.berger-biotechnik.com 2007

 

 

This essay is extacted from the author’s book “75 Years Chemistry: Re-Reading’’ Part II,  PROJ. V.

 



[1]    Germany supplies 15 % of the world's demand for potassium

[2]    its damages to the underground-water level for the whole region are and will become immense and vast (rain)..

 

[ back to "Publications & Special Reports" ]
[ BWW Society Home Page ]